
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

(SAND2018-11134 C)

Verifying Qthreads: Is Model Checking viable for
User-Level Tasking runtimes?

N o a h E va n s

Background

1.Extreme scales -> management of parallelism
progressively harder and more important.

2.Being able to automatically parallelize applications ==
grand challenge.

3.Task parallel gets a little closer.
4.Break up the app into smallest pieces -> schedule with

global runtime.
5.lots of context switches so implemented as user level

threads with scheduling in user space.

Qthreads
1. models concurrency non uniform

work loads and memory.

2. FEBs (full empty bits)
1. CSP channels, but word sized
2. Sleep until someone writes.

3. non uniform memory aware
scheduling
1. NUMA regions as well as cores

Shepherd

Worker Worker Worker

Qthread

Qthread

Qthread

Qthread

Fig. 1. Structure of the Qthreads runtime. Shepherds have queues of Qthreads, which are given to workers to execute.

have more traditional shared memory with mutual exclusion
semantics.

Qthreads is implemented as a traditional shared memory
runtime with explicit synchronization. Qthreads’ FEB imple-
mentation serves as a primitive to construct more complex
mutual exclusion primitives.

On a POSIX based system, Qthreads begins by call-
ing qthread_initialize which spawns multiple worker
pthreads, each running the qthread_master function. The
qthread_master function dequeues, executes and then
handles/reschedules threads based on their state. The state
of individual workers is maintained in their thread local
storage and can be queried with accessor functions like
qthread_shep_get or qthread_worker which can be
used to derive the shepherd and worker hierarchy.

The exact enqueueing/dequeueing behavior is implemented
by a scheduler which is chosen at configure time. These
schedulers make locality decisions (e.g., determining which
NUMA domain to place a thread in) as well as defining
the order in which tasks are dequeued and enqueued by the
scheduler. These schedulers can also implement work stealing
or other forms of load balancing to make sure that each
scheduler has sufficient work to do. For the purposes of this
paper we use the Qthreads default “distrib” scheduler.

Qthreads themselves are instantiated by a user-level program
using Qthreads, using a variant of the qthread_spawn or
qthread_fork commands to specify a function pointer to
be run as a “qthread”. Join semantics are not implemented
explicitly; instead, thread joins can be handled by using
Qthreads’ FEB subsystem with a qthread treating a valid return
value as a synchronization point to signal process completion.
There are other mechanisms to synchronize completing threads
as well such as the SINC facilities [23], but they are beyond
the scope of this paper.

Modeling an implementation this complex in Promela is

non-trivial. Promela does not provide pointers, nor does it
provide functions (only inline statements) as a way of de-
composing a program. Finally, Promela does not provide non-
local goto functionality, which is the traditional foundation of
coroutine implementations. With these constraints in mind we
made the following design decisions to work around the gaps
in C and Promela’s semantics:

1) Pointers: Since Promela does not provide pointer se-
mantics, modeling pointers is a common and well-understood
problem in Promela [22]. The traditional approach has been to
implement pointers manually, representing individual pointers
as array indices into externally defined arrays.

The Qthreads model uses this method to implement its
pointer references. All pointers in the Qthreads Promela model
are reimplemented as int values (with -1 representing the
NULL value) and point to global arrays of the target data
structures.

This array-based pointer implementation also allows the
implementation of coreferential data structures (Promela also
does not allow coreferences in typdefs). Shepherd, Qthread,
and Worker pointers and back-pointers are represented as
Promela ints which point to global arrays of Shepherd,
Qthread and Worker structures.

However, just having pointers is insufficient to model
Qthreads. Much of Qthreads relies on thread local storage
(TLS) to store pointers to self-referential state. Promela’s
proctypes have no concept of thread local storage, but they do
have individual process ids which can be used to reason about
per-process state. To model TLS we used a _pid (process
id) indexed array of structures which contained all of the
information that individual Qthreads workers needed (e.g., its
parent shepherd).

Figure 2 compares the original C and our Promela emulation
of pointers.

Users

6

1. Default thread model for Cray’s
Chapel language.

2. An execution engine in Kokkos.

3. Part of the system software suite in
Sandia’s astra.

4. Being integrated into OpenMPI.

Qthreads Problem: New
Architectures, Old code

1. Good news: new challenges with modern
architectures.

◦ Relaxed memory semantics in Power and
Arm.

◦ Qthreads’ FEB and NUMA aware semantics
potentially a good fit.

2. Bad news:
◦ Half finished research features can't be

conditionally compiled (i.e. unifdefed)
out.

◦ X86 centric lingering race conditions.

Potential Solution: Verify Qthreads

3

1. Idea: model checking initially, and deep
spec later.

2. Qthreads model
A. New Qthreads behavior without cruft into

the code base.
B. Test across memory models (c.f. Abe et

al.)

3. Use model as basis for a “deep
specification”

Initial Feasibility Study: Use the Spin
Model Checker

4

1.SPIN’s sequential consistency to
start

2.No one to one correspondence
with the code base (no Modex,
CIVL etc...)

3.Can Spin verify a large tasking
runtime like Qthreads?

Three Problems:
Construction, Scale, Practicality

5

1. Possible to take a C runtime like qthreads
and model it?

1. Construction: Semantic mismatches,
pointers especially function pointers,
model the loading of programs?

2. Scale to a reasonable number of
threads?

3. Practical? I.e. does it tell us anything
useful?

Construction

2

1.Pointers -> array accesses.
1.Memory “pool” which is allocated and return numbers

that indirect into the array.

2.Function -> Inlines
1.Add output values to function calls

2.Gotos to simulate returns

3.Function Pointers -> Defunctionalized table
1. Manually turn function pointers into table lookups

Scale

6

1. Experimental Setup: 64
core Haswell, 132 GB ram

2. Bit-state hashing
3. Research question: How

many workers and
shepherds can we scale to?

Workers are Compute
Bound

1. Workers are compute bound, get to
24 before hitting unreasonable
amounts (> 1 hour) of time to verify.

0

40000

80000

120000

0 10 20 30
Number of Workers

M
em

or
y

U
se

d
(M

By
te

s) Memory (Workers)

0

200

400

600

800

0 10 20 30
Number of Workers

Ti
m

e
(S

ec
on

ds
)

Time (Workers)

Shepherds are Memory
Bound
1. Blows up SPINs memory after 16

shepherds.
◦ 800 seconds to success, fails

quickly later

2. 16 Shepherds still sufficient to
explore interesting problems

0

40000

80000

120000

0 10 20 30
Number of Shepherds

M
em

or
y

U
se

d
(M

By
te

s) Memory (Shepherds)

0

200

400

600

800

0 10 20 30
Number of Shepherds

Ti
m

e
(S

ec
on

ds
)

Time (Shepherds)

Practicality: SPIN catches a
graverobber!

4

1. Concurrency bug, appears after 2 tasks.

2. Scheduler steals a terminated task off
the queue.

3. Assert fails -- can’t steal dead task (no
graverobbing allowed!)

4. May be a modeling error (more likely an
untriggered race).

5. Still shows us that SPIN can reason about
scheduling task runtimes.

Related Work

14

1. Model checking for MPI (MPI-SPIN)

2. Automated Model Extraction (CIVL, Modex)

3. Tasking runtime verification (Legion’s operational semantics)

4. Our approach: first tasking runtime with a checked model.

Future Work

4

1. Use SPIN variants to explore alternative
memory models

◦ espec ia l ly ARM

2. Scale using distributed approaches
◦ (e .g . Mu lt ip le hash funct ions fo r b i t s ta tes) .

3. Finish implementing the rest of Qthreads
model

◦ Dif fe rent schedu le rs .
◦ Yie ld semant ics .

4. Extend to other runtimes (Argobots,
Massivethreads?)?

Conclusions

16

1. Tasking models way to handle heterogeneity and parallelism at extreme scale.

2. Qthreads has contributions to make in this tasking space

3. Need new techniques to deal with parallelism and relaxed memory models
◦ formal verification can help here.

4. It is feasible and practical to verify Qthreads semantics in SPIN.
◦ Reasonable size models tell us about the runtime behavior.

5. Next, look at relaxed memory models and scaling up.

Questions?

3

