National
Laboratories

Verifying Qthreads: Is Model Checking viable for @ Sandia

User-Level Tasking runtimes?

Noah Evans

@iieicy NYSA

LA LN

Sandia National Laboratories is a multimission
... laboratory managed and operated by National
...."'? Technology & Engineering Solutions of Sandia,
..6, i LLC, a wholly owned subsidiary of Honeywell
()
[X J

International Inc., for the U.S. Department of
3 Energy’s National Nuclear Security
Center for Computing Research

Administration under contract DE-NA0003525.
(SAND2018-11134 C)

Background

1.Extreme scales -> management of parallelism
progressively harder and more important.

2.Being able to automatically parallelize applications ==
grand challenge.

3.Task parallel gets a little closer.

4.Break up the app into smallest pieces -> schedule with
global runtime.

5.lots of context switches so implemented as user level
threads with scheduling in user space.

.:!.g
..g”o
Center for Computing Research

Qthread

Qthread

Qthread

Shepherd

T

Worker

Worker

Worker

Qthreads

1. models concurrency non uniform
work loads and memory.

2. FEBs (full empty bits)
1. CSP channels, but word sized
2. Sleep until someone writes.

3. non uniform memory aware
scheduling
1. NUMA regions as well as cores

+#CCR

Center for Computing Research

Usetrs

. 1. Default thread model for Cray’s
N Chapel language.

OPEN MPI @J/A:EL 2. An execution engine in Kokkos.

3. Part of the system software suite in
Sandia’s astra.

4. Being integrated into OpenMPI.

.:9.?
..g"o
Centy Computing Research

Qthreads Problem: New
Architectures, Old code

1. Good news: new challenges with modern
architectures.
o Relaxed memory semantics in Power and
Arm.
o Qthreads’ FEB and NUMA aware semantics
potentially a good fit.

2. Bad news:

o Half finished research features can't be
conditionally compiled (i.e. unifdefed)
out.

o X86 centric lingering race conditions.

#CCR

Center for Computing Research

Potential Solution: Verity Qthreads

1. Idea: model checking initially, and deep
spec later.

2. Qthreads model
A. New Qthreads behavior without cruft into

the code base.
B. Test across memory models (c.f. Abe et
al.)

3. Use model as basis for a “deep
specification”

#CCR

Center for Computing Research

Initial Feasibility Study: Use the Spin
Model Checker I

1.SPIN’s sequential consistency to
start

2.No one to one correspondence
with the code base (no Modex,
CIVL etc...)

3.Can Spin verify a large tasking I
|

s\

runtime like Qthreads?

Three Problems:
Construction, Scale, Practicality ‘

1. Possible to take a C runtime like qthreads |
and model it?

1. Construction: Semantic mismatches,
pointers especially function pointers,
model the loading of programs?

2. Scale to a reasonable number of ‘
threads? I

3. Practical? l.e. does it tell us anything
useful?

#CCR

Center for Computing Research
|

Construction

1.Pointers -> array accesses.

1.Memory “pool” which is allocated and return numbers
that indirect into the array.

2.Function -> Inlines
1.Add output values to function calls

2.Gotos to simulate returns

3.Function Pointers -> Defunctionalized table
1. Manually turn function pointers into table lookups

#CCR

Center for Computing Research

Scale

Experimental Setup: 64

" core Haswell, 132 GB ram

Bit-state hashing

Research question: How
many workers and
shepherds can we scale to?

0:9-?
..g“o
Center for Computing Research

Memory (Workers)

i Workers are Compute
~ 80000-
E Bound
= 40000 /
o
£
= 070 10 20 30
Number of Workers 1. Workers are compute bound, get to
R 24 before hitting unreasonable
500 amounts (> 1 hour) of time to verify.
2600-
3
@400
£200
|_
0+ | | |
0 10 20 30
Number of Workers

#CCR

Center for Computing Research

Memory (Shepherds)
120000-

80000-

40000-

Memory Used (MBytes)

0+, ! | ‘
0 10 20 30
Number of Shepherds

Time (Shepherds
200+ (Shep)

(Seconds)
LN (e)]
o o
o o

Time

N

o

o O

0 10 20 30
Number of Shepherds

Shepherds are Memory
Bound

1. Blows up SPINs memory after 16
shepherds.

o 800 seconds to success, fails
quickly later

2. 16 Shepherds still sufficient to
explore interesting problems

#CCR

Center for Computing Research

Practicality: SPIN catches a
graverobber!

Concurrency bug, appears after 2 tasks.

2. Scheduler steals a terminated task off
the queue.

3. Assert fails -- can’t steal dead task (no
graverobbing allowed!)

4. May be a modeling error (more likely an
untriggered race).

5. Still shows us that SPIN can reason about
scheduling task runtimes.

#CCR

Center for Computing Research

14

Related Work

= o=

Model checking for MPI (MPI-SPIN)
Automated Model Extraction (CIVL, Modex)
Tasking runtime verification (Legion’s operational semantics)

Our approach: first tasking runtime with a checked model.

#CCR

Center for Computing Research

Future Work

1. Use SPIN variants to explore alternative
memory models

o especially ARM

2. Scale using distributed approaches
o (e.g. Multiple hash functions for bitstates).

3. Finish implementing the rest of Qthreads
model
o Different schedulers.

0 Yield semantics.

4. Extend to other runtimes (Argobots,
Massivethreads?)?

#CCR

Center for Computing Research

®

Conclusions

Tasking models way to handle heterogeneity and parallelism at extreme scale. ‘

2. Qthreads has contributions to make in this tasking space

3. Need new techniques to deal with parallelism and relaxed memory models
formal verification can help here.

4. It is feasible and practical to verify Qthreads semantics in SPIN.
Reasonable size models tell us about the runtime behavior.

5. Next, look at relaxed memory models and scaling up. |

|
I
fCCR‘

Center for Computing Research

Questions?

.:9.?
..2‘0
Centy Computing Research

