
Verifying Concurrency in an Adaptive
Ocean Circulation Model

Alper Altuntas 1 John Baugh 2

altuntas@ucar.edu, jwb@ncsu.edu

1National Center for Atmospheric Research, Boulder, CO
2North Carolina State University, Raleigh, NC

Correctness’17
November 12, 2017

Denver, CO



An application of lightweight formal methods

I A model checking approach for concurrent numerical models

I An abstraction guideline

I to verify concurrency

I to generate safe synchronization arrangements

I An example application:

I ADCIRC++, an adaptive ocean circulation model

I Promela (SPIN)

Altuntas and Baugh 1



Concurrency in Numerical Modeling

I Domain decomposition

I Data parallelism

I Coupled modeling

I to simulate multiple phenomena

I Multi-instance modeling

I to simulate varying configurations

Altuntas and Baugh 2



Concurrency in Numerical Modeling

I Domain decomposition

I Data parallelism

I Coupled modeling

I to simulate multiple phenomena

I Multi-instance modeling

I to simulate varying configurations

potentially more asynchronous,

global reductions less common

Altuntas and Baugh 2



Storm Surge Modeling

I Applications:

I Forecasting, hindcasting

I Risk analysis

I Infrastructure design

I ADCIRC:

I An FE shallow water model.

I Used by USACE, FEMA, NOAA,
and others.

I ADCIRC++:

I A prototype based on ADCIRC to
experiment with ASM.

Hurricane Gustav (2008)
(Dietrich et al., 2011)

Altuntas and Baugh 3



Outline

1. Introduction

2. Adaptive Subdomain Modeling

3. Verifying Concurrency in Numerical Models

4. Case Study: Verifying Concurrency in ADCIRC++

5. Conclusions



Adaptive Subdomain Modeling

I A computational technique

I Multi-instance concurrency:

I Parent domain (provides BCs)

I Child domains

I alternative design scenarios

I adaptive spatial extents

I Performance and accuracy:

I Computational cost of each child:
∼2% of cost of full domains

I Surge height errors: < 1cm

Child Domain

Parent Domain

Altuntas and Baugh 4



Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
recede. . Time: 0%

Altuntas and Baugh 5



Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
recede. . Time: 1%

Altuntas and Baugh 5



Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
recede. . Time: 16%

Altuntas and Baugh 5



Shinnecock Inlet Child Domain Patch

I The patch expands if:

I Altered hydrodynamics
propagate.

I The patch contracts if:

I Altered hydrodynamics
recede. . Time: 100%

Altuntas and Baugh 5



Adaptive Subdomain Modeling

Enforcing child domain interfaces

I how to synchronize
concurrent domains
sharing the same
memory space?

Altuntas and Baugh 6



Adaptive Subdomain Modeling

Correctness

I Challenge: multi-instance concurrency

I Race conditions on critical quantities 1

I Our solution:

I Phasing mechanism

I Our verification approach:

I lightweight model checking

1Quantities transferred from parent to children: surge height, velocities, wet/dry states, wind forcing

Altuntas and Baugh 7



Adaptive Subdomain Modeling

Phasing Mechanism:

1. Group the routines (that constitute
a timestep) into phases.

2. Regulate the progression of domains
during each timestep.

to prevent:

I parent from overwriting data.

I children from using stale data.

Altuntas and Baugh 8



1. Introduction

2. Adaptive Subdomain Modeling

3. Verifying Concurrency in Numerical Models

4. Case Study: Verifying Concurrency in ADCIRC++

5. Conclusions



Verifying Concurrency in Numerical Models

Model Checking Workflow

Altuntas and Baugh 9



Verifying Concurrency in Numerical Models

I Constituents to be abstracted

1. critical quantities

2. concurrent components/instances

3. synchronization mechanism

Altuntas and Baugh 10



Abstraction

1. critical quantities: (e.g., masses, velocities, fluxes)

I represent with integer variables (denoting the version, or timestamp).

I a single variable to represent the entire grid.

I model only two operations:

I write → increments variable to designate a new version

I copy → a placeholder for safety checks

Altuntas and Baugh 11



Abstraction

2. concurrent components/instances:

I represent each as a separate process.

I incorporate only the synchronization/communication properties.

3. synchronization mechanism:

I use synchronization constructs of the specification language of choice.

Altuntas and Baugh 12



1. Introduction

2. Adaptive Subdomain Modeling

3. Verifying Concurrency in Numerical Models

4. Case Study: Verifying Concurrency in ADCIRC++

5. Conclusions



Case Study: Verifying Concurrency in ADCIRC++

1. Critical Quantities

inline write(var){

if

:: isParent() -> var++;

:: else -> var--;

fi

}

inline copy(var){

if

:: isParent() -> skip;

:: else -> CHECK_SAFETY;

fi

}

Altuntas and Baugh 13



Case Study: Verifying Concurrency in ADCIRC++

2. Concurrent Domain Instances

I In a typical ASM run: 50-100 children

I In the abstract model: a single child

I data transfer is one-way from a parent to its children.

I children do not interfere.

Altuntas and Baugh 14



Case Study: Verifying Concurrency in ADCIRC++

3. Phasing Mechanism

I Let SPIN generate phasing arrangements non-deterministically.

I Call the timestepping routine infinitely many times.

Altuntas and Baugh 15



Case Study: Verifying Concurrency in ADCIRC++

I Verification

I The correctness depends on:

I criteria for entering a phase.

I arrangement of routines as phases.

I Thus, verification involves:

I confirming the correctness of criteria

I determining safe phasing arrangements
(that eliminate race conditions on the critical quantities)

Altuntas and Baugh 16



Case Study: Verifying Concurrency in ADCIRC++

I Verification

I Safety property: (checked at every copy operation)

#define CHECK_SAFETY safe=(var==0)

ltl notsafe {eventually !safe}

Interpretation: Child will eventually copy the wrong version of a quantity.
Counterexamples: Safe phasing arrangements

⇒ Looking for phasing arrangements that are never not safe.

Altuntas and Baugh 17



Conclusions

I Using SPIN, we found all race-free phasing arrangements in ASM.

I The approach requires only modest levels of human and computer effort:

I Promela code: 190 lines

I Initial model put together in less than a day.

I Future direction: Using the approach in the context of performance
optimization, e.g., optimizing concurrency in coupled climate models.

Altuntas and Baugh 18



Thanks


	Introduction
	Adaptive Subdomain Modeling
	Verifying Concurrency in Numerical Models
	Case Study: Verifying Concurrency in ADCIRC++
	Conclusions

