Quality Assurance and Error Identification for the Community Earth System Model

Allison Baker
I/O & Workflow Applications
Application Scalability and Performance Group

Dan Milroy, Dorit Hammerling, Haiying Xu

Software Correctness for HPC Applications
SC 2017 Workshop
Nov 12, 2017
The National Center for Atmospheric Research

• Boulder, Colorado, USA
• Funded by National Science Foundation (NSF)
• Mission: to understand the behavior of the atmosphere and related Earth and geospace systems
NCAR's Community Earth System Model (CESM)

- past, present and future climate states
- interdisciplinary collaborative effort (led by NCAR)
- ~2M lines of Fortran code (20+ years)
- state of continual development
Motivation

Changes to hardware or software environment or CESM code

What if $X \neq \tilde{X}$?
Motivation

Changes to hardware or software environment or CESM code

What if \(X \neq \tilde{X} \) ?

(A) panic: must have bit-for-bit !!!

CESM results are bit-for-bit reproducible if:
- same software
- same compiler and flags
- same MPI
- same parameters,
- same initial conditions,
- same hardware*,...

\[X \]

\[\tilde{X} \]
Motivation

Changes to hardware or software environment or CESM code

What if $X \neq \tilde{X}$?

(A) **panic**: must have **bit-for-bit** !!!

(B) **compare LONG simulations**: climate scientist

(C) **automated tool**: ???
Tool Software Quality Assurance

Insure that changes during the CESM development life cycle do not adversely affect the results!

Question: Is the new result correct?

Wish list: inexpensive, objective, easy-to-use, fast

Challenge: definition of “correct” or “not climate-changing”?
Tool \rightarrow Software Quality Assurance

Insure that changes during the CESM development life cycle do not adversely affect the results!

- **Is the new data statistically distinguishable from the original?**

 - **Wish list:** inexpensive, objective, easy-to-use, fast

 - **Challenge:** definition of “correct” or “not climate-changing”?
Approach

Q: Is X statistically distinguishable from \tilde{X}?

... allowable error?

Approach: evaluate in the context of climate model’s internal *variability*

An **ensemble of CESM runs:**

- “accepted” machine and “accepted” software stack
- $O(10^{-14})$ perturbations in initial temperature
- many variables (use principal components)
Approach

Q: Is X statistically distinguishable from \tilde{X}?

... allowable error?

Approach: evaluate in the context of climate model’s internal **variability**

An ensemble of CESM runs:

- “accepted” machine and “accepted” software stack
- $O(10^{-14})$ perturbations in initial temperature
- many variables (use principal components)

yields an “accepted” statistical distribution that can be used to evaluate “new” runs
Ensemble Consistency Test (ECT)

1. Create accepted ensemble
 - CESM-software engineers

2. Statistically quantify variability

3. Create "new" runs
 - CESM-user

4. Evaluate: PASS or FAIL
 - automated test
Ensemble Consistency Test (ECT)

Highlights:
- automated Python tool
- objective, user-friendly
- rapid feedback for model developers
- suite of tools: atmosphere, land, ocean, sea ice
Ensemble Consistency Test (ECT)

Highlights:
- automated Python tool
- objective, user-friendly
- rapid feedback for model developers
- suite of tools: atmosphere, land, ocean, sea ice

<table>
<thead>
<tr>
<th>Tool</th>
<th>Target Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM-ECT</td>
<td>CAM, CLM</td>
</tr>
<tr>
<td>POP-ECT</td>
<td>POP, CICE</td>
</tr>
<tr>
<td>UF-CAM-ECT</td>
<td>CAM, CLM</td>
</tr>
</tbody>
</table>
How well does CESM-ECT work?

- modifications *expected* to be climate-changing *fail*
 - e.g. relative humidity, dust emissions, CO₂ levels
- modifications *not expected* to be climate changing *pass*
 - e.g., threads, -O0, compiler version, code rearrangement
- option when bit-for-bit reproducibility is not possible:
 - new algorithms, solvers, compiler options, hardware technologies

...but this is a coarse-grain test
Fine-grain tool: root cause

Identify/understand the reason for the inconsistency!

CESM-ECT “fail”:
• *currently*: principal component information...
• *in progress*: give helpful information!
 (variable(s), module(s), etc.)

NCAR | Compressing Climate Data
Fine-grain tool: root cause

Motivation: inconsistency with FMA (Fused Multiply-Add)

Which output variables contributed to the failure?

principal components => output variables

Initial (slow): systematic exclusion of variable combinations (redo PCs/test)

Better (ML): logistic regression + variable selection
Fine-grain tool: root cause

logistic regression + variable selection

FAIL SIMULATIONS

ACCEPTED ENSEMBLE SIMULATIONS

select variables with different behaviors between groups

• simulations are 9 time steps (cheap)
• ~30 FAIL runs, ~350 ensemble runs
• Scikit-learn: randomized logistic regression
Fine-grain tool: root cause

Which CESM modules affect output variables?

Manual: talk to climate scientists

Automated: abstract syntax tree for CESM
- graph structure of source code
- non-trivial: ~2M lines of complex Fortran code
- in progress
Fine-grain tool: root cause

- **FAIL runs** → **Output variables** → **AST** → **CESM modules**
 - **KGEN** = Fortran Kernel Generator
 - extract CESM kernel
 - stand alone exe (single core)
 - identify differences in internal variables

Compressing Climate Data
Concluding remarks

• *improve quality assurance & error identification in CESM!*
 – large and complex code
 – minor differences => differences in simulation output

• ensemble consistency approach
 – objective, user-friendly
 – port-verification (new CESM-supported architectures)
 – uncovered multiple errors in code and hardware

• cause of statistical inconsistency
 – nearly complete!
Thanks!

abaker@ucar.edu